AnyCAD Rapid API 2025
Help you to create a better world!
|
Public 成员函数 | |
GXYZ () | |
GXYZ (double theX, double theY, double theZ) | |
void | SetCoord (double theX, double theY, double theZ) |
void | SetCoord (int theIndex, double theXi) |
void | SetX (double theX) |
void | SetY (double theY) |
void | SetZ (double theZ) |
double | Coord (int theIndex) |
void | Coord (double[] theX, double[] theY, double[] theZ) |
double | X () |
double | Y () |
double | Z () |
double | Modulus () |
double | SquareModulus () |
boolean | IsEqual (GXYZ theOther, double theTolerance) |
void | Add (GXYZ theOther) |
GXYZ | Added (GXYZ theOther) |
void | Cross (GXYZ theOther) |
GXYZ | Crossed (GXYZ theOther) |
double | CrossMagnitude (GXYZ theRight) |
double | CrossSquareMagnitude (GXYZ theRight) |
void | CrossCross (GXYZ theCoord1, GXYZ theCoord2) |
GXYZ | CrossCrossed (GXYZ theCoord1, GXYZ theCoord2) |
void | Divide (double theScalar) |
GXYZ | Divided (double theScalar) |
double | Dot (GXYZ theOther) |
double | DotCross (GXYZ theCoord1, GXYZ theCoord2) |
void | Multiply (double theScalar) |
void | Multiply (GXYZ theOther) |
void | Multiply (GMat theMatrix) |
GXYZ | Multiplied (double theScalar) |
GXYZ | Multiplied (GXYZ theOther) |
GXYZ | Multiplied (GMat theMatrix) |
void | Normalize () |
GXYZ | Normalized () |
void | Reverse () |
GXYZ | Reversed () |
void | Subtract (GXYZ theOther) |
GXYZ | Subtracted (GXYZ theOther) |
void | SetLinearForm (double theA1, GXYZ theXYZ1, double theA2, GXYZ theXYZ2, double theA3, GXYZ theXYZ3, GXYZ theXYZ4) |
void | SetLinearForm (double theA1, GXYZ theXYZ1, double theA2, GXYZ theXYZ2, double theA3, GXYZ theXYZ3) |
void | SetLinearForm (double theA1, GXYZ theXYZ1, double theA2, GXYZ theXYZ2, GXYZ theXYZ3) |
void | SetLinearForm (double theA1, GXYZ theXYZ1, double theA2, GXYZ theXYZ2) |
void | SetLinearForm (double theA1, GXYZ theXYZ1, GXYZ theXYZ2) |
void | SetLinearForm (GXYZ theXYZ1, GXYZ theXYZ2) |
This class describes a cartesian coordinate entity in 3D space {X,Y,Z}. This entity is used for algebraic calculation. This entity can be transformed with a "Trsf" or a "GTrsf" from package "gp". It is used in vectorial computations or for holding this type of information in data structures.
GXYZ.GXYZ | ( | ) |
Creates an XYZ object with zero coordinates (0,0,0)
GXYZ.GXYZ | ( | double | theX, |
double | theY, | ||
double | theZ ) |
creates an XYZ with given coordinates
void GXYZ.Add | ( | GXYZ | theOther | ) |
<me>.X() = <me>.X() + theOther.X() <me>.Y() = <me>.Y() + theOther.Y() <me>.Z() = <me>.Z() + theOther.Z()
new.X() = <me>.X() + theOther.X() new.Y() = <me>.Y() + theOther.Y() new.Z() = <me>.Z() + theOther.Z()
double GXYZ.Coord | ( | int | theIndex | ) |
returns the coordinate of range theIndex : theIndex = 1 => X is returned theIndex = 2 => Y is returned theIndex = 3 => Z is returned Raises OutOfRange if theIndex != {1, 2, 3}.
void GXYZ.Cross | ( | GXYZ | theOther | ) |
<me>.X() = <me>.Y() * theOther.Z() - <me>.Z() * theOther.Y() <me>.Y() = <me>.Z() * theOther.X() - <me>.X() * theOther.Z() <me>.Z() = <me>.X() * theOther.Y() - <me>.Y() * theOther.X()
Triple vector product Computes <me> = <me>.Cross(theCoord1.Cross(theCoord2))
Triple vector product computes New = <me>.Cross(theCoord1.Cross(theCoord2))
new.X() = <me>.Y() * theOther.Z() - <me>.Z() * theOther.Y() new.Y() = <me>.Z() * theOther.X() - <me>.X() * theOther.Z() new.Z() = <me>.X() * theOther.Y() - <me>.Y() * theOther.X()
double GXYZ.CrossMagnitude | ( | GXYZ | theRight | ) |
Computes the magnitude of the cross product between <me> and theRight. Returns || <me> ^ theRight ||
double GXYZ.CrossSquareMagnitude | ( | GXYZ | theRight | ) |
Computes the square magnitude of the cross product between <me> and theRight. Returns || <me> ^ theRight ||**2
void GXYZ.Divide | ( | double | theScalar | ) |
divides <me> by a real.
GXYZ GXYZ.Divided | ( | double | theScalar | ) |
divides <me> by a real.
double GXYZ.Dot | ( | GXYZ | theOther | ) |
computes the scalar product between <me> and theOther
boolean GXYZ.IsEqual | ( | GXYZ | theOther, |
double | theTolerance ) |
double GXYZ.Modulus | ( | ) |
computes Sqrt (X*X + Y*Y + Z*Z) where X, Y and Z are the three coordinates of this XYZ object.
GXYZ GXYZ.Multiplied | ( | double | theScalar | ) |
New.X() = <me>.X() * theScalar; New.Y() = <me>.Y() * theScalar; New.Z() = <me>.Z() * theScalar;
new.X() = <me>.X() * theOther.X(); new.Y() = <me>.Y() * theOther.Y(); new.Z() = <me>.Z() * theOther.Z();
void GXYZ.Multiply | ( | double | theScalar | ) |
<me>.X() = <me>.X() * theScalar; <me>.Y() = <me>.Y() * theScalar; <me>.Z() = <me>.Z() * theScalar;
void GXYZ.Multiply | ( | GMat | theMatrix | ) |
<me> = theMatrix * <me>
void GXYZ.Multiply | ( | GXYZ | theOther | ) |
<me>.X() = <me>.X() * theOther.X(); <me>.Y() = <me>.Y() * theOther.Y(); <me>.Z() = <me>.Z() * theOther.Z();
void GXYZ.Normalize | ( | ) |
<me>.X() = <me>.X()/ <me>.Modulus() <me>.Y() = <me>.Y()/ <me>.Modulus() <me>.Z() = <me>.Z()/ <me>.Modulus()
Raised if <me>.Modulus() <= Resolution from gp
GXYZ GXYZ.Normalized | ( | ) |
New.X() = <me>.X()/ <me>.Modulus() New.Y() = <me>.Y()/ <me>.Modulus() New.Z() = <me>.Z()/ <me>.Modulus()
Raised if <me>.Modulus() <= Resolution from gp
void GXYZ.Reverse | ( | ) |
<me>.X() = -<me>.X() <me>.Y() = -<me>.Y() <me>.Z() = -<me>.Z()
GXYZ GXYZ.Reversed | ( | ) |
New.X() = -<me>.X() New.Y() = -<me>.Y() New.Z() = -<me>.Z()
void GXYZ.SetCoord | ( | double | theX, |
double | theY, | ||
double | theZ ) |
For this XYZ object, assigns the values theX, theY and theZ to its three coordinates
void GXYZ.SetCoord | ( | int | theIndex, |
double | theXi ) |
modifies the coordinate of range theIndex theIndex = 1 => X is modified theIndex = 2 => Y is modified theIndex = 3 => Z is modified Raises OutOfRange if theIndex != {1, 2, 3}.
<me> is set to the following linear form : theA1 * theXYZ1 + theA2 * theXYZ2
void GXYZ.SetLinearForm | ( | double | theA1, |
GXYZ | theXYZ1, | ||
double | theA2, | ||
GXYZ | theXYZ2, | ||
double | theA3, | ||
GXYZ | theXYZ3 ) |
<me> is set to the following linear form : theA1 * theXYZ1 + theA2 * theXYZ2 + theA3 * theXYZ3
void GXYZ.SetLinearForm | ( | double | theA1, |
GXYZ | theXYZ1, | ||
double | theA2, | ||
GXYZ | theXYZ2, | ||
double | theA3, | ||
GXYZ | theXYZ3, | ||
GXYZ | theXYZ4 ) |
<me> is set to the following linear form : theA1 * theXYZ1 + theA2 * theXYZ2 + theA3 * theXYZ3 + theXYZ4
<me> is set to the following linear form : theA1 * theXYZ1 + theA2 * theXYZ2 + theXYZ3
<me> is set to the following linear form : theA1 * theXYZ1 + theXYZ2
<me> is set to the following linear form : theXYZ1 + theXYZ2
void GXYZ.SetX | ( | double | theX | ) |
Assigns the given value to the X coordinate
void GXYZ.SetY | ( | double | theY | ) |
Assigns the given value to the Y coordinate
void GXYZ.SetZ | ( | double | theZ | ) |
Assigns the given value to the Z coordinate
double GXYZ.SquareModulus | ( | ) |
Computes X*X + Y*Y + Z*Z where X, Y and Z are the three coordinates of this XYZ object.
void GXYZ.Subtract | ( | GXYZ | theOther | ) |
<me>.X() = <me>.X() - theOther.X() <me>.Y() = <me>.Y() - theOther.Y() <me>.Z() = <me>.Z() - theOther.Z()
new.X() = <me>.X() - theOther.X() new.Y() = <me>.Y() - theOther.Y() new.Z() = <me>.Z() - theOther.Z()
double GXYZ.X | ( | ) |
Returns the X coordinate
double GXYZ.Y | ( | ) |
Returns the Y coordinate
double GXYZ.Z | ( | ) |
Returns the Z coordinate